ПРОГРАММА «АГРОТЕХНОПОЛИС «ЗЕЛЕНЫЙ МИР» Новые строительные материалы:

Проект «Дестам»

В рамках проекта «Экопоселение 21 века» проектом «Дестам» предусматривает сооружение и эксплуатацию на территории Заказчика предприятия по модификации мягких сортов древесины мощностью 7400 м³ «Дестама» в год и выпуску из него продукции.

Существо технологий реализуемых в данном проекте, заключается в пропитке с торца под давлением оцилиндрованной заготовки свежесрубленной древесины мягких лиственных пород в растворе карбамида (мочевины), вымачивании и последующей сушке под механическим давлением 0,6 – 1,2 МПа в сушильных камерах, оборудованных гидроцилиндрами. Получаемый материал: модифицированная древесина, имеющая товарный знак "Дестам", имеет цвет от светло до темнокоричневого, напоминая текстурой грецкий орех.

Аналогами "Дестама" являются натуральная древесина твердых лиственных пород (дуб, бук, граб) и экзотических пород (самшит, бакаут, красное и черное дерево), а также модифицированная древесина марки "Лигнамон", выпускаемая в Словакии.

Отличительными особенностями "Дестама" являются:

- более высокое качество и стабильные физико-механические характеристики;
- возможность варьирования физико-механическими характеристиками и габаритами выпускаемого изделия в зависимости от требований покупателя;
 - взаимозаменяемость исходного сырья;
 - огне и биостойкость;
 - минимальная кооперация при поставках со стороны (лес и карбамид);
 - более низкая себестоимость;
- возможность получать за один цикл большие объемы заготовок (20 м³) (при других известных технологиях не более 1,5 м³.

Гибкость производства, а также возможность производства модифицированной древесины заданных свойств и видов по плотности, цвету и фактуре позволяет за предельно короткие сроки менять номеклатуру выпускаемых изделий «под заказчика».

Для размещения предприятия проектом предусмотрено сооружение промышленного теплоизолированного здания ангарного типа площадью 2000 м² на закрытой территории

Технологические возможности производства модифицированной древесины (МД) позволяют получать конечный продукт с широким спектром декоративных, прочностных, физико-механических и эксплуатационных свойств, которые можно изменять в зависимости от требований потребителя или производителя

Получаемый конечный продукт, сохраняет уже имеющиеся свойства исходной древесины и приобретает технологически задаваемый спектр новых качеств, например; повышенную твердость и низкую истираемость, плотность и прочность, био-влаго-огнестойкость, новые декоративные свойства. Технологический процесс представляет собой химико-механическое модифицирование древесины, в результате которого образуется новый материал - ДЕСТАМ (ГОСТ24329-80).

ДЕСТАМ по сравнению с исходной древесиной имеет ярко выраженную фактуру и приобретает цвет, от светло-желтого до темно-коричневого. Один из главных моментов процесса модификации состоит в том, что древесина приобретает способность к прессованию (до плотности 1100 кг/м. куб. и выше) и к изгибу, что предоставляет возможность применения нетрадиционных методов механической обработки при выпуске конечного изделия.

Сочетание высоких экологических и физико-механических свойств модифицированной древесины с относительной дешевизной делают этот материал незаменимым при строительстве коттеджей, теплиц нового поколения, зимних садов, а также производстве оконных и дверных блоков без применения вредных пластиков в интересах ЖКХ.

Дестам разработан Воронежской Государственной Лесотехнической академией и представляет собой модифицированную древесину, изготавливаемую из цельной натуральной древесины мягких лиственных и хвойных пород путем пластификации и прессования. Дестам является аналогом выпускаемых в Европе и США марок модифицированной древесины "лигнамон" и "стейпак", но отличается меньшей стоимостью и высокой формостабильностью.

Дестам производится по российскому патенту № 2039645 и в соответствии с ТУ 15200 - 003 - 96498189 - 02 имеет следующие характеристики:

1. цвет от светлого до темно-коричневого

- 2. текстура напоминает грецкий орех
- 3. предел прочности при сжатии вдоль волокон 110-140 МПа
- 4. объемное разбухание при влагопоглащении 12%

Дестам является полноценным заменителем древесины твердых лиственных и экзотических пород, пластмасс и текстолита и применяется для изготовления шахтной крепи, паркета, мебели, моделей литья, подшипников скольжения, бочковой тары, столярно-строительных изделий, спортинвентаря (кий, биты, кегли), музыкальных инструментов, шпалы для ж/д.

Себестоимость производства 1куб.м Дестама около 5тыч. руб.

Стоимость реализации 1 куб. м Дестама 18-20 тыс. руб.

Дестам является экологически чистым материалом, биостойким и малогорючим.

Сертифицирован.

Потребность по данным 2005г.

Отрасль промышленности	Изделия	Объем модифицированной древесины, тыс. м ³
Деревопереработка	мебель, паркет, паркетная доска, декор	62
Строительство	двери, окна, балки, погонаж	110
Судо- и вагоностроение	отделочные панели, сидения	14
Угольная промышленность	элементы крепежа шахт (анкера, верхняки)	55
Музыкальная промышленность	деки, мудштуки	8
Спортинвентарь	кии, биты, оружейные ложи, кегли, клюшки	15
Тарное производство	бочки, ящики, купели	35
Металлургия	Модели литья	43
Сельхозмашиностроение	Сельхозмашиностроение подшипники скольжения, втулки, вкладыши	

Установка для модификации древесины УПС 10-2

Модификация древесины — это направленное изменение свойств древесины, позволяющее комплексно улучшить свойства древесины, повышая ее прочность, стабильность Январь 2013 г.

Коммерческое предложение

МОДИФИЦИРОВАННАЯ ДРЕВЕСИНА МАРКИ «ДЕСТАМ» Воронежская ООО фирма «Олми» выпускает оборудование для производства модифицированной древесины марки «ДЕСТАМ» в виде доски и бруса длиной до 3000 мм,

плотностью 700-1100 кг/м3, влажностью 5-8%,

Дестам разработан Воронежской государственной Лесотехнической академией и представляет собой модифицированную древесину, изготовляемую из цельной натуральной древесины мягких лиственных и хвойных пород путем пропитки водным раствором ингредиентов и горячего прессования. Дестам является аналогом выпускаемых в Европе и США марок модифицированной древесины «лигнамон» и «стейпак», но отличается меньшей стоимостью и высокой формостабильностью.

Дестам производится в соответствии с ТУ 15200-003-96498189-02 имеет следующие характеристики:

- 1. цвет от светло- до темно-коричневого;
- 2. текстура дестама подобна текстуре древесины благородных пород
- 3. предел прочности при сжатии вдоль волокон 110-140 МПа;
- 4. Объемное разбухание при влагопоглощении 12%

Дестам является полноценным заменителем древесины твердых лиственных и экзотических пород, пластмасс и текстолита и применяется для изготовления шахтной крепи, паркета, мебели, моделей литья, подшипников скольжения, бочковой тары, столярно-строительных изделий, спортинвентаря (кий, биты, кегли), музыкальных инструментов.

Дестам - экологически чистый материал, биостойкий и малогорючий. Сертифицирован.

ИТОГО 354

Линия для производства бруса/доски из модифицированной древесины «Дестам».

Характеристики «Дестама»

Плотность, кг/м3 – 750... 800 (тах. до 1100)

Влажность, % – 6... 8 %

Предел прочности при сжатии, МПа – 110 (тах. до 160)

Статический изгиб, Мпа – 170 (тах. до 270)

Твердость торцевая, Мпа – 81 (тах. до 110)

Модуль упругости, Мпа – 20 (тах. до 37)

Твёрдость – 330 МПа

Цвет – от светло- до тёмно-коричневого (возможны варианты)

Размеры брусков – 50 x 110 x 2200 мм, (max. длиной до 3 м)

- 65 x 140 x 2200 мм, (max. длиной до 3 м)

Размеры доски – 35 x 170 x 2200 мм, (max. длиной до 3 м)

- 50 x 200 x 2200 мм, (max. длиной до 3 м)

Огне-биостойкий – Да (заключение пож. охраны)

Нетоксичный – Да (санитарно-эпидемиологическое заключение)

Влагопоглощение 14%

Возможные применения

- изготовление паркета, мебели, отделочных и конструкционных материалов

Замещает древесину твёрдых лиственных пород (включая бакаут, железное дерево и др.)

Отпускная цена 1 сорт - 25 т. руб.; 2 сорт - 20 т. руб.,

себестоимость Дестама не более 8 т. руб.

НЕОБХОДИМЫЕ: ПОМЕЩЕНИЯ, ОБОРУДОВАНИЕ, МАТЕРИАЛЫ, ПЕРСОНАЛ на УПС-10-2 Производительность в год 1600м3

Объем выпуска продукции в месяц 150м3

Объем выпуска продукции в сутки 5 м3

Персонал фирмы – 8чел.

. Категории:

- мастер / занятость в сутки 1 / 8 часов
- инженер-технолог / занятость в сутки 1 / 8 часов
- рабочие / занятость в сутки 6 / 8 часов
- Режим работы 2 смены

Помещение (м2) –500м2 Высота 5м производственные площади – 200 м2 складские помещения – 300 м2

Исходное сырьё и расходные материалы (расход из расчета на 1600 м3 дестама в год) Древесина — 3500 м3, натуральная цельная древесина мягких лиственных пород: осина, берёза, ольха, тополь (диаметр — 13...40 (см), длина — 6

ПРОГРАММА «АГРОТЕХНОПОЛИС «ЗЕЛЕНЫЙ МИР»

Проект «Пеносиликальцит»

В рамках проекта «Экопоселение 21 века» предусмотрено создание мобильного комплекса по производству силикальцита и пеносиликальцитов различной плотности.

Комплекс представляет собой мини-завод на платформе тягача типа «Камаз». Мини-завод оснащен автономной дизель-энергостанцией мощностью 30кВт.

Для работы в стационарном режиме во вторую смену проектом предусмотрено создание легкого промышленного корпуса предприятия с автономной энергоустановкой, оснасткой, инструментом, формами литья пеноблоков.

Режим работы комплекса двух или трехсменный:

• первая смена- выпуск пеносиликальцитов для заливки опалубок непосредственно в местах строительства ноосферных поселений;

Фактура материала «АэроЛит»

• вторая (или вторая и третья) смена – выпуск пеносиликальцитов для заливки в формы литья и выпуск блоков различного назначения и размера.

Новая технология по изготовлению бетона на основе силикальцитов, (песка) является универсальным материалом и может использоваться практически во всех областях, в т.ч. как несущий конструкционный материал для малоэтажного строительства, а также в качестве конструкционно-теплоизоляционного самонесущего материала в многоэтажном жилом, административном и промышленном строительстве. Использование блоков «АэроЛит» в качестве облегченного материала для внутренних перегородок обеспечивает существенный прямой экономический эффект (в 2 раза дешевле), а также уменьшает вес перегородок примерно в 4 раза.

Новая технология — «АэроЛит», получила Сертификат соответствия на бетоны ячеистые по ГОСТ 25485-89 следующих марок: D300, D350, D400, D500, D600, D700 и выпускает Универсальную производственную линию УПЛ-РИД-2Б для производства газобетона (вид «ячеистого» бетона) безавтоклавного твердения с высокими потребительскими характеристиками.

Преимущества производства указанного строительного материала заключаются в том, что:

- обладая основными параметрами автоклавного газобетона, мы получаем газобетон без автоклавирования и без пропарки, что является существенным фактором в условиях повышения цен на энергоносители и высокой стоимости оборудования (автоклавов);
- газобетон получается из таких основных компонентов, как: клинкер, опока, известь, мел и инертный наполнитель (или без). Компоненты, применяемые в технологии изготовления по весу незначительны что минимизирует затратную часть на оборудование и сырьё, так как портланд- цемент традиционно применяемый в других технологиях значительно дороже клинкера портландцементного, опоки, извести, мела и золы.
- в качестве инертного наполнителя может применяться зола после сжигания **ТБО и промышленных отходов**, материал дешевый, удобный в работе и экологически безопасный после обработки по технологии «капсюлирования»;
- в качестве инертного наполнителя может применяться дополнительно и песок;

- без доработки оборудования, изменения **техпроцесса** и исходных материалов можно получать «газобетон» плотностью **300 1200** кг/м3. При этом прочность на сжатие будет изменяться с 6 до 100 кг/см2.;
- разработанное оборудование позволяет не только получать «газобетон» стационарно, но и подавать его на 15-20 метров по уровню установки оборудования, либо на 8-10 метров вверх;
- «газобетонная» масса формируется без последующей усадки до 900 мм. в высоту;
- время до распалубки «газобетонной» массы от **1,5 до** 2 **часов** (по традиционной технологии не менее 12 часов), что **существенно** сокращает количество форм в случае производства блоков стационарно и **уменьшает** время заливки и распалубки стен в случае монолитного домостроения;
- в связи с тем, что марка «газобетона» варьируется в широком диапазоне, при заливке монолитных конструкций можно заливать: а) Не несущие конструкции (теплоизоляционный «газобетон»). б) Несущие конструкции и стены (в зависимости от проекта, прочность на сжатие 20-40 кг./см2). в) Конструкции перекрытий (прочность на сжатие до 100 кг./см2).

Итак продукция Проекта – теплоизоляционные и/или конструкционные блоки, монолитные стены, плиты и гранулы серии «АэроЛит».

«АэроЛит» - это:

- 1. Ячеистый бетон безавтоклавного твердения;
- 2. Ячеистый бетон с наполнителем из ячеистых стеклокерамических гранул;
- 3. Ячеистый стеклокерамический конструкционно-теплоизоляционный материал, производимый из опал-кристобалитовых и других кремнистых полезных ископаемых общего распространения (опока, диатомит, трепел, спонголит, радиолярит, цеолит и т.п.), добываемые открытым способом. В данном случае сырьем для производства продукции «АэроЛит» является Ахматовское месторождение диатомита и опоки (Пензенская область).

Под торговым наименованием «АэроЛит»:

На первом этапе после пуска производства планируется производить:

Ячеистый бетон «**Аэро.Лит**», марки **D400**, **D500**, с применением опал-кристобалитового вяжущего.

На втором этапе после пуска производства планируется производить:

Ячеистый бетон «**АэроЛит**», марок **D300**, **D400**, **D500**, **D600**, с применением ячеистых стеклокерамических гранул, изготовленных из **опал-кристобалитового** вяжущего.

Продукция выпускаемая на первых двух этапах по своим характеристикам соответствует ГОСТ 25485-89 «Бетоны ячеистые» - Сертификат соответствия РОСС RU.СЛ54.Н00147 N0830819 (Копия прилагается).

На третьем этапе после пуска производства и проведения дополнительных НИОКР планируется производить — **ячеистый стеклокерамический конструкционно-теплоизоляционный «Аэро**Лит»:

- АЛ-250 (Конструкционно-теплоизоляционный блок/плита, залитый стеновой монолит, плотностью 250кг/м3 с коэффициентом теплопроводности 0,07Вт/(мК) прочностью на сжатие 35кг/см2 и водопоглощением 3%); морозостойкость не менее 100 циклов
- АЛ-320(Конструкционно-теплоизоляционный блок/плита, залитый стеновой монолит, плотностью 320кг/м3 с коэффициентом теплопроводности 0,09Вт/(мК) прочностью при сжатии 50кг/см2 и водопоглощением 3%); морозостойкость не менее 100 циклов

• АЛ-400(Конструкционно-теплоизоляционный блок/плита плотностью 400кг/м3 с коэффициентом теплопроводности 0,11Вт/(мК) прочностью при сжатии 100кг/см2 и водопоглощением 2%мас.); морозостойкость — не менее 100 циклов

Размеры блоков/плит «АэроЛит» могут быть любыми — это определяется заказчиком. Продукция вспучивается в формах больших размеров. Извлекаемый из такой формы блок продукции затем распускается на плиты и/или блоки требуемых размеров. При заливке в опалубки получаем готовую стену, при малоэтажном строительстве.

дальнейшем продуктовый ряд будет существенно расширен новыми теплоизоляционными, конструкционными, конструкционно-теплоизоляционными отделочными материалами с превосходным качеством и доступными ценами. В частности, планируется производить жесткую теплоизоляцию АЛ-120, которая сможет эффективно конкурировать жесткими базальтовыми плитами, a также экструзионным пенополистиролом.

ЭФФЕКТИВНОСТЬ применения материалов «АэроЛит»:

«АэроЛит» является универсальным материалом и может использоваться практически во всех областях, в т.ч. как несущий конструкционный материал для малоэтажного строительства, а также в качестве конструкционно-теплоизоляционного самонесущего материала в многоэтажном жилом, административном и промышленном строительстве.

С экономической точки зрения «**АэроЛит» наиболее эффективен как конструкционно- теплоизоляционный материал, используемый в малоэтажном строительстве, а также для выполнения стен в многоэтажном строительстве** (возводится несущая конструкция, а стены выполняют роль ограждения пространства помещения от внешней среды). В этом случае «АэроЛит» обеспечивает следующие преимущества:

- существенное уменьшение стоимости возведения стен, в отдельных случаях в 2 раза (в частности, по сравнению со стеной, выполняемой из пенобетона с облицовкой штукатуркой)
- существенное сокращения сроков возведения стен, в отдельных случаях в 4-5 раз (в частности, по сравнению со стеной, выполняемой из пенобетона с любым видом облицовки); это обеспечивается за счет сокращения количества слоев и увеличенных габаритов АэроЛита
- существенное **уменьшение массы стен, в отдельных случаях в 8-10 раз** (по сравнению со стеной из кирпича или из пенобетона); уменьшение массы стен существенно снизит стоимость и требования к фундаменту и несущим конструкциям
- существенное сокращение толщины стен, в среднем на 6-12см, а в отдельных случаях до 40см; это в свою очередь, обеспечит увеличение полезной площади; для жилого строительства стоимостью \$500/м², уменьшение толщины на 6-12см дает дополнительный доход в \$10-20 на м² стены
- существенное упрощение стеновой конструкции (меньше слоев, не требуется тщательного укрепления минераловатных плит и т.п.), что уменьшает количество строительных ошибок и упрощает контроль качества строительных работ.

Сокращение стоимости, массы и сроков возведения стен обеспечит:

- существенное уменьшение стоимости всего строительства до 2 раз
- существенное (до 2-4 раз) сокращение сроков строительства
- существенное (до 5-7 раз) сокращение массы объекта
- увеличение полезной площади на 1-2%
- увеличение долговечности стеновой конструкции
- повышение пожарной безопасности (материал негорючий)
- повышение экологичности (натуральный минеральный материал без синтетических добавок).

Использование блоков «АэроЛит» в качестве облегченного материала для внутренних перегородок обеспечивает существенный прямой экономический эффект (в 2 раза дешевле), а также уменьшает вес перегородок примерно в 4 раза.

2. При всех перечисленных преимуществах получаемых строительных материалов особо надо отметить наименьший на рынке размер капитальных вложений в строительство таких производств за счёт отсутствия больших энергозатрат для производства и минимальных производственных площадей для размещения технологической линии (более чем в пять раз).

К примеру планируемое в дальнейшем строительство производств материалов «АэроЛит» с объёмом выпуска 96 000 м3 в год будет стоить 200 000 000 рублей что в 6 раз дешевле немецких заводов автоклавного газобетона. Окупаемость при этом не более 1,5 лет с момента запуска производства (строительство 1 год).

3. Оборудование которое позволило получить вышеперечисленные результаты запатентовано.

* * *

Новая технология по изготовлению бетон на основе силикальцитов, (песка) является универсальным материалом и может использоваться практически во всех областях, в т.ч. как несущий конструкционный материал для малоэтажного строительства, а также в качестве конструкционно-теплоизоляционного самонесущего материала в многоэтажном жилом, административном и промышленном строительстве.

(Характеристики одного из исходного материала до стадии вспенивания)

Согласно исследованиям физико-технических свойств получаемого на основе песка **мелкозернистого бетона**, используемого для изготовления фундаментов и несущих стен, получены **следующие результаты:**

- 1. удельный вес = 2107кг/м.куб.
- 2. прочность при изгибе и сжатии:

Определялись по нестандартным образцам. Для перехода к стандартной прочности вводиться понижающий коэффициент – 0.8.

Вид Результат Прочность с Класс учетом коэф. испытания испытания (марка) = 0.8МΠа бетона по прочности 12.6 10.07 на изгиб 33.2 B20 (M250) 26.5 на сжатие

Таблица №1

Соотношение прочностей при изгибе и сжатии - (0.38) получилось более высоким, чем у бетонов на цементе - (0.15 - 0.20).

- 3. Коэффициент водопоглощения = 6.5%
- 4. Коэффициент размягчения:

Характеризует степень потери прочности при увлажнении.

Таблица №2

Вид Прочность сухих	Прочность	Коэффициент
---------------------	-----------	-------------

испытания	образцов	влажных	размягчения
	МПа	образцов	
		МПа	
изгиб	12.6	10.02	0.81
сжатие	33.2	33.2	1.0

Полученные результаты являются признаком высокой водостойкости испытанного материала.

5. Морозостойкость

Проведенные испытания образцов на попеременное замораживание и оттаивание показала, что потери массы и прочности за 100 циклов не произошло.

Данный бетон в состоянии показать более высокую марку по морозостойкости, чем марка F 100.

Используя последующую технологию вспенивания данного бетона из песка, получаем пеносиликальцит с необходимыми коэффициентами теплосопротивления.

Оборудование для изготовления вышеприведенных материалов устанавливается на автомобильном шасси для использования в качестве мобильных строительных мини заводов.

ПРОГРАММА «АГРОТЕХНОПОЛИС «ЗЕЛЕНЫЙ МИР»

Проект «Вакуумное стекло»

В рамках проекта «Экопоселение 21 века» проектом «Вакуумное стекло». предусматривается строительство и эксплуатация высокорентабельного комплекса по производству вакуумных стеклопакетов для целей создания экопоселений, зимних садов, теплиц нового поколения, а также получение прибыли за счет продажи готовых изделий предприятиям жилищно-коммунальной сферы, сельского хозяйства, строительства и т. д.

Оригинальные технологии, уникальные свойства стеклопакетов с вакуумной теплоизоляции открывают возможности по проектированию и производству принципиально новых изделий и комплексов энергосбережения, а также позволяют использовать их при создании энергетических комплексов будущего на основе эффективного использования возобновляемых источников энергии, использующих солнечные потоки.

Использование стеклопакетов с вакуумной теплоизоляцией в ближайшее время получит широкое применение в области строительных технологий и жилищно-коммунальной сфере, сельском хозяйстве. Стеклопакеты станут одними из основных базовых конструкций экологического типового дома XXI века.

Особенно привлекательно и эффективно применение вакуумных пакетов при сооружении теплиц, оранжерей, зимних садов, бассейнов, северных вариантов жилищ, тепловых энергетических панелей, а также солнечных энергетических станций.

Необходимая производственная площадь предприятия 2000 кв. метров. На этой площади будет смонтировано новое оборудование «под ключ» мощностью 120 тыс. кв. м вакуумных стеклопакетов в год.

Общая стоимость основных фондов – 92, 314 млн руб. Численность работающих – 56 чел. (основных рабочих –48)

ПРОГРАММА «АГРОТЕХНОПОЛИС «ЗЕЛЕНЫЙ МИР»

Проект «Геокар»

В рамках проекта «Экопоселение 21 века» проектом предусматривает сооружение и эксплуатацию предприятия по производству теплоизоляционных и конструкционных торфоблоков «Геокар».

Целью проекта является Обеспечение потребностей проекта «Экопоселение 21 века» утеплительными и конструкционными материалами нового поколения. Получение прибыли за счет сооружения и эксплуатации высокорентабельного завода по производству тепло-изоляционных и

конструкционных торфоблоков «Геокар» и реализации их на внутреннем и внешнем рынках.

Теплоизоляционный блок «Геокар», имеет размер 51 х 25 х 9 см (в четыре кирпича), что позволяет в зависимости от конкретных требований проекта, легко достигать необходимых параметров стен по теплопроводности, обеспечивая при этом перевязку с кирпичной кладкой ввиду кратности размеров. Геометрия блоков может меняться при изготовлен и под требования потребителя. Материал имеет хорошие тепло- и звукоизоляционные характеристики. Строительный теплоизоляционный блок Геокар обладает теплопроводностью 0,047-0,08 Вт/мК. Стена из этих блоков толщиной 0,64 метра заменяет по теплосбережению стену из силикатного кирпича толщиной 2,3 метра.

Уникальны экологические свойства торфоблоков. Экспериментальным путем доказано, что торф обладает бактерицидностью. Стены из *Геокара* прекрасно дышат, снижают в помещении уровень радиации в пять раз, создают тот комфорт в доме, который присущ сосновым срубам. *Геокар* не гниет и не подвергается атакам грызунов.

Геокар - долговечен, соответствует всем ныне действующим требованиям СниП. Гарантированный (подтвержденный различными экспертизами ведущих строительных институтов страны) срок эксплуатации блоков – не менее 200 лет.

Легко поддается обработке и подгонке. Позволяет значительно сократить сроки и стоимость строительства. Себестоимость производства около 700 руб. за м³.

Исключительно ценно использование торфоблоков в строительстве сельскохозяйственных комплексов: в коровниках и свинарниках, там, где животные выделяют аммиак. Торф, будучи отличным адсорбентом, поглощает ядовитые пары, в результате чего улучшается экологическая обстановка в помещении.

Продукция комплекса Блоки из пенокерамики, теплосопротивление 16, плотность 200 – 600 кг/м³, марка от 150 до 300 Безгвоздевая черепица из пенокерамики Облицовочная утеплительная плитка Огнеупорные материалы (алюмосиликаты)

ПРОГРАММА «АГРОТЕХНОПОЛИС «ЗЕЛЕНЫЙ МИР»

Проект «Пенокерамика» по созданию завода по производству блоков «Керпен».

В рамках проекта «Экопоселение 21 века» проектом предусматривает сооружение и эксплуатацию предприятия по производству теплоизоляционных и конструкционных блоков «Керпен».

Целью проекта является Обеспечение потребностей проекта «Экопоселение 21 века» утеплительными и конструкционными материалами нового поколения. Получение прибыли за счет сооружения и эксплуатации высокорентабельного завода по производству тепло-изоляционных и конструкционных блоков, черепицы и облицовочной плитки «Керпен» и реализации их на внутреннем и внешнем рынках.

Проектом предусмотрено создание производства мощностью 30 млн.. условного кирпича в год.

Создание материала стало возможным путем комплексного использования достижений в производствах красного кирпича, керамической плитки, черепицы и пеноматериалов, при этом была разработана новая энерго- и ресурсосберегающая нанотехнология получения строительной пенокерамики (керпен), основанная на методе вспенивания в обжиге стеклокристаллической матрицы.

Стеклокристаллические пеноматериалы «Керпен» используются для гражданского или промышленного строительства, особенно малоэтажного в сельской местности или в условиях Севера и приравненных к ним. Они могут быть применены в качестве стеновых, конструкционных, звуко-теплоизоляционных, облицовочных, кровельных изделий. Экономическая эффективность их производства обусловлена малой материалоемкостью, меньшими энергозатратами при получении и строительстве, а также повышением эксплуатационных характеристик объектов. Применение керпена позволяет снизить вес стеновых конструкций в 3-4 раза при одновременном увеличении их теплоспротивления, что является решающим фактором для экономии топлива при эксплуатации зданий и сооружений (особенно в северных условиях и сельской местности).

ПРОГРАММА «АГРОТЕХНОПОЛИС «ЗЕЛЕНЫЙ МИР»

Проект «Стеклокремнезит»

Стеклокремнезит обладает уникальными физико-механическими и декоративными свойствами. Разработана технология изготовления стеклокремнезита в колпаковых электропечах,

Диапазон использования очень широк, используется для облицовки внутренних и внешних стен зданий, бассейнов, фонтанов, пешеходных дорожек, фасадов зданий, малых архитектурных форм и т.д.

Стеклокремнезит имеет следующие преимущества:

- экологическая чистота
- повышенной морозостойкостью, высокой адгезией к бетонным поверхностям, термостойкостью, устойчивостью к вибрации
- большой спектр цветовой гаммы
- использование в декоративно-монументальном оформлении интерьеров и экстерьеров.
- изготовление из стеклобоя и утилизированного стекла.